

GADGETMASTER

TM

User’s Guide

Copyright – LightMachinery Inc
MC-4501 rev 6.1

Introduction..1
Caution ..1
General Description...2
Power Outputs...2
Sensor Inputs ..2
Configuring the GADGETMASTER...2
Connecting the GADGETMASTER to your Parallel Port...................2
GADGETMASTER Software ...3
Using the GadgetMaster Test Program -gmtestv6.exe.....................3
Sensor Inputs ..4
Switches ..4
Photosensors ..4
Inputs 5,6,7 & 8 ...5
Power Outputs...5
Stepper Motors ..5
DC Motors ...6
Solenoids...6
Lights ...6
LED's ...6
Buzzers..6
Speakers (or other coils) ...6
Writing your own programs in Visual Basic7
General Commands ..8
Controlling Stepper Motors..9
Using the Stepper Motor Control Program STEPPERV6.EXE........11
Half stepping..12
Heat Management...12
Writing Stepper Motor programs in Visual Basic.............................13
Analog Input ..15
Output Enable..17
The 24 Volt Option...18
Troubleshooting...19
Appendix A ... I
Binary Numbers.. I
Appendix B ... III
Understanding Addresses .. III
Appendix C.. IV
IBM Printer Port Assignments ... IV
Appendix D... V
Detailed Programming Notes ... V
Using Basic to track 'inputs'.. V
Using Basic to program motion ... VI
Using Basic to Control Stepper Motors .. VII

1

Introduction

The GADGETMASTER is designed to allow simple, safe and inexpensive
control of motors and other devices. The GADGETMASTER connects to the
printer port of any PC, by sending commands to the printer port the user
controls motion and can receive information from sensors and switches.
The GADGETMASTER is normally configured to have eleven output lines
which can be used to turn on lights, DC motors, buzzers, speakers or to run
stepper motors and eight input lines to provide a means to track position or
the status of other switches and sensors. The GADGETMASTER can also be
configured to have 12 outputs and 4 inputs. This allows the
GADGETMASTER to run up to 3 stepper motors.

Caution

Your computer could be damaged by misusing this board. Your computer
and the board should be turned off whenever connections are being made to
the board. The protective cover on the back of the board is there to prevent
inadvertent connection of the PC printer port to 12 volts or other voltage
sources, do not remove this cover. Under no circumstances should the
board be connected to 115 volts from an electrical outlet. Use only the
power supply provided with the unit.
The GADGETMASTER is designed to control motors and other similar
devices, when these motors are connected to mechanical devices such as
gears and pulleys enough torque is generated to cause serious damage to
people and property. Please think about how you are using the
GADGETMASTER and use it safely.

Note: Do not connect the outputs to devices that will draw more than
0.24 Amps continuously. This means that external devices should have a
resistance of at least 50 Ohms. Otherwise overheating of the driver chips
will result. Care should be taken to ensure that this rule is followed
whenever devices not supplied by LightMachinery are being connected.

2

General Description

Power Outputs
The outputs, numbered 1 through 12, are either high (12 volts) or low

(grounded). The Outputs will conduct electricity from the high output
through a motor or light bulb or other device to a low output (or to ground).
If both outputs are set to high or both outputs are set to low then no current
will flow and the device will not be turned on.

Sensor Inputs
The input lines, numbered 1 through 8, are 'pulled up' to 5 volts by the
board through a 10 kohm resister. This means that when the input lines are
grounded the lines change states and that a small amount of current will
flow to ground. The input lines on the printer port are usually used for
things like "out of paper" and "printer error". You can use these input lines
for monitoring sensors to measure position, light/dark or switch
open/closed.

Configuring the GADGETMASTER
The GADGETMASTER can be configured to either have 12 outputs and 4
inputs OR 11 outputs and 8 inputs. To change from one configuration to
the other simply move the 'jumper' next to Input 1. Position A will enable
11 outputs and 8 inputs while position B will enable 12 outputs and 4
inputs (inputs 5 to 8).

Connecting the GADGETMASTER to

your Parallel Port
Connecting the GADGETMASTER to your PC is easy, just plug one end of
the 25 pin cable into your printer port on the back of your PC and the other
end into the same connector on the GADGETMASTER . The 12 Volt power
supply plugs into the DC connector. Motors and lights etc. are connected
between any two of the outputs or one of the outputs and ground (or
supply).

3

GADGETMASTER Software
All of the software in this User’s Guide, as well as new revisions to this

guide, are available free of charge from our web site at

www.lightmachinery.com in the download section.
GADGETMASTER Connection Diagram

Using the GadgetMaster Test Program –

gmtestv6.exe
Gmtestv6.exe is a simple Windows interface that enables you to turn on
any output and to monitor all 8 inputs to the GADGETMASTER . The
program requires the file inpout32.dll to be saved in the same directory as
gmtestv6.exe.

4

To activate one of the outputs just click in box next to the output number
that you want to activate. When a sensor input is connected to ground the
input number will change from red to green. The analog input thermometer
is a volt meter that displays the voltage level connected to the Analog
Input. Measuring the voltage takes about ½ a second so when the Analog
input is enabled the 8 sensor inputs are monitored every second or so. To
speed up the response time of the program just disable the analog
measurement.

Sensor Inputs

Switches
Each of the inputs to the GADGETMASTER is connected to 5 volts through a
10k ohm resistor. When one of the input connections is connected to
ground, your PC will see the input change states. This can be quickly seen
by connecting a wire to one of the input lines and touching the wire to one
of the 3 ground connections on the board. You will see the checkbox for
that sensor on your screen change states and change from red to green.
Simple mechanical switches can be connected between any of the inputs
and ground, when the switch is closed the check box will change color.

Photosensors
Variable resistance photosensors or photocells can also be connected
between any of the inputs and ground. These devices change their

5

electrical resistance depending on the amount of light that is shining on
them. You can connect a photocell between any of the inputs and ground.
When the resistance to ground is lower than the resistance to 5 Volts (10k
ohms) then the input will switch states and the checkbox will change from
red to green. The sensors can be very useful not just because they can sense
light and dark but because they are non-contact, they never wear out. Try
connecting a photosensor between the analog input and 5 volts and a
resistor (5k ohms or so) between the analog input and ground, the meter
will now read the brightness that the photosensor is detecting.

Inputs 5,6,7 & 8
Parallel ports were originally designed with 4 inputs, the GADGETMASTER

provides 8 inputs by multiplexing two sets of 4 inputs. When the Jumper
on the board is set to the ‘A’ position then the 8 inputs are enabled. To
read inputs 1,2,3 & 4 the user must output a 0 value for output 12. To read
input 5,6,7 & 8 the user must output a 1 for output number 12. This will be
explained further in the section on writing your own programs.

Power Outputs

The outputs are numbered from 1 to 12. The outputs are either high (12
Volts) or low (grounded). The outputs will conduct electricity from a high
output through a motor or light to a low output. If both outputs are set to
high or both outputs are set to low then no current will flow and the device
will not be turned on.

Note: Do not connect the outputs to devices that will draw more than
0.24 Amps continuously. This means that external devices should have a
resistance of at least 50 Ohms. Otherwise overheating of the driver chips
will result. Care should be taken to ensure that this rule is followed
whenever devices not supplied by LightMachinery are being connected.

Stepper Motors
The GADGETMASTER was designed with stepper motors in mind. Stepper
motors are very useful in automation projects. Four phase stepper motors
require 4 outputs, so the GADGETMASTER was designed with the option of
enabling 12 outputs so that three stepper motors could be run at the same
time.

6

DC Motors
DC motors are inexpensive and are ideally suited for high speed rotation.
The GADGETMASTER was designed to enable the outputs to both source
and sink current so that up to 12 DC motors can be powered in both
forward and reverse.

Solenoids
Solenoids are great for projects that require a movement between only 2
positions, like pen-up and pen-down on a plotter. When a solenoid is
energized the plunger extends (or contracts) a fixed amount usually less
than 1 inch. There are also rotary solenoids which behave something like
stepper motors. Rotary Solenoids rotate a fixed amount every time they are
energized. They only require two connections but they are not usually
reversible (reversable rotary solenoids have 3 wire connections).

Lights
12 volt lights are easy to power with the GADGETMASTER . Just connect
the bulb between the one of the outputs and ground.

LED's
LED's a little more complicated because they need to be current limited.
This means that a resistor is required in series with the LED so that too
much current does not flow through the LED and burn it out. Most LED's
will run on about 20 milliAmps so at 12 volts this would require a resistor
of 600 ohms (V=IR) in series with the LED.

Buzzers
12 Volt buzzers can be hooked up in the same way as lights or DC motors.
When the output is activated; Buzzzzzzzz.

Speakers (or other coils)
While the GADGETMASTER will never make music hooking up speakers
can be very interesting. When a speaker is energized (has current running
through it) the cone is pushed forward. When the current is stopped, the
cone relaxes back. By turning the output 'on and off' the speaker can be
made to oscillate at different frequencies and create different tones. It can
also be used as a way to position things by attaching them to the speakers
cone...

7

Note: Speakers will have a low impedance, typically 8 ohms, and will
draw too much current if connected directly to the outputs of the
GADGETMASTER . Use either a resistor in series with the speaker or use a
capacitor in series with the speaker. The capacitor will prevent any DC
current from flowing through the speaker but will allow the speaker to jump
whenever the output is energized or de-energized. If a series resistor is
used you must ensure that it has a high power rating (several watts).

Writing your own programs in Visual

Basic

OK, so you have run gmtestv6.exe and verified that the GADGETMASTER is
working, now it is time to start writing your own programs. You can use
any language that supports writing to the parallel port addresses, such as
Basic or C++. In this User’s Guide we will demonstrate the programming
using Visual Basic. Since it is always easier to start your programming
with a program that already works we suggest downloading the software
code for the gmtestv6.exe program. Open the VB editor and open the file
gmtestv6, it should look like this…

8

This program contains most of the elements to control simple inputs and
outputs.

To make programming the GADGETMASTER even easier we have included

the gadget.bas module. This module has subroutines that enable the use of
simple commands turn the outputs off and on and read the state of the
inputs. Inpout32.dll is still required to be in the same directory as your
program (but inpout32.bas is not required). You can also modify these
subroutines or write your own.

The following commands are enabled when gadget.bas is included in your
program.

General Commands
Call gadget_output (a,b,c,d,e,f,g,h,i,j,k,l) - This command is used to
turn the 12 outputs on or off. If a=1 and b=0 then output 1 is turned on and

output 2 is turned off.

Example

'TURN OFF ALL THE OUTPUTS
 Call gadget_output(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

9

Call gadget_input (m,n,o,p) - Thus command returns the status of the 8
input lines. If p=0 then input number 4 is off. If the jumper is on the B
position then only the first four inputs are read. If the jumper is in the ‘A’
position and output 12 is 0 then inputs 1 – 4 are read, if output 12 is 1 then
inputs 5 – 8 are read.

Example

'CHECK THE INPUTS 1 THROUGH 4
 Call gadget_input(in1, in2, in3, in4)

Example

'CHECK THE INPUTS 5 THROUGH 8
 Call gadget_output (a,b,c,d,e,f,g,h,i,j,k,1) 'output 12 must = 1
Call gadget_input(in5, in6, in7, in8)

Call gadget_measure (v, s) - This command measures the voltage on
the analog input. 'v' is the voltage value on the analog input between 0 and
5 volts. If the GADGETMASTER is not connected then the value -1 is
returned. The value of 's' is the number of loops performed by the
computer during the 1/2 second cycle time required to measure the voltage
on the analog input. It is a good representation of the computer's speed.

Example

'MEASURE THE ANALOG INPUT
 Call gadget_measurement(voltage, speed)

Call gadget_address("378") - This command sets the parallel port

address. It must be done once during the program. Note that the
address,;378, 278 or 3BC must be in quotations, since it is passed as text.

Example

'SET PORT ADDRESS TO 378 AS A DEFAULT
 Call gadget_address("378")

Controlling Stepper Motors
Stepper motors do not 'spin' when current is supplied to their windings,
instead they 'step'. The angle of the step depends on the motor, common
step angles are 1.8, 5, 7.5 and 15 degrees. Stepper motors are very useful
in automation because their position can be precisely controlled. If you
want a 15 degree stepper motor to turn 3 revolutions then simply step the
motor 72 times (one revolution, 360 degrees, will require 24 steps).
Stepper motors usually have 4 'phases' and these phases need to be
energized one at a time to make the motor rotate. To make the stepper
rotate backwards you simply energize the phases in the reverse order.

10

To connect the AIRPAX 15 degree stepper motor or the Eastern Air

Devices 1.8 degree stepper motor to the GADGETMASTER just follow the
connection diagram below.

'Airpax' and 'Eastern Air Device' stepper motor connection diagram

By energizing output 1 then 2 then 3 then 4 then 1 then 2... The stepper
motor will revolve. If at any time the order is reversed, the stepper motor
will reverse. Stepper motors do not respond with lightning speed and care
should be taken not to step them too fast or they will get out of sync with
the outputs and lose their position. To determine how fast they can run
under a given load just experiment with faster and faster speeds until they
don't respond properly.

11

Using the Stepper Motor Control

Program STEPPERV6.EXE
The program stepperv6.exe is included with the GADGETMASTER . When
you run the program the screen will look something like this…

Just enter the number of steps you want the motor to step and press the 'Go
Forward' or 'Go reverse' button. The delay value can be changed, the
amount of the delay will depend on your computer. If you are using a
Pentium computer you will need a delay that is 100 times longer than for
older models of PC. Try entering higher and lower numbers. The pointer

12

value is displayed to demonstrate the principle of stepping up and down
through the four phases of the motor (and to help with debugging).

Stepper motors can either be run 'one phase on at a time' or 'two phases on
at a time'. By energizing two phases at a time more current is supplied to
the motor and therefore more torque is generated. When running with two
phases on, adjacent phases are powered at the same time, as shown in the
following diagram.

So, to move to position 1, using 'one at a time', output number 1 is
powered. To move to position 1 using 'two at a time', energize both phase
1 and phase 2.

Note: Because twice the current is being supplied to the motor, the motor
will run twice as hot.

Half stepping
Powering two phases at the same time moves the motor to a position half
way in between the position of either phase, as shown in the diagram
below. The motor can be 'half stepped by alternating single and double
phase positions. When the motor is powered down it will naturally remain
in one of the single phase positions.

Heat Management
You will notice that stepper motors can run quite hot. This is to be
expected, however there are ways to reduce the heating of the motors.
When current is supplied to the stepper motor, the motor heats up. When

13

the current is stopped, the motor cools down. When the motor is run with 2
phases on at a time the motor will run twice as hot. When a motor is sitting

still with the current on, the motor will continue to heat up. Stepper

motors are normally turned off when they are not turning. If the motor
is powered off while running 'one phase on at a time', it will remain in the
same position unless something turns the motor. If the motor is powered
off while running 'two phases at a time' then it will slip over to one of the
single phase positions. This is because the single phase positions
correspond to magnetic detents in the motor. So, one way to cut down on
the heat to the motor is to run in single phase mode and to turn off the
motors when they are going to be left in a fixed position. This can also be
done if the motor is run with two phases on provided the motor is allowed

to move a half step when it is powered down. Remember to turn off the

motor at the end of your program with statements such as

'TURN OFF ALL THE OUTPUTS
 Call gadget_output(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Writing Stepper Motor programs in

Visual Basic
Stepperv6.exe is written using gadget.bas and the complete source code can
be downloaded from our web site. The following is a description of the
stepper motor commands available in gadget.bas and the examples from the
stepperv6.exe program. All of the source code software for both
stepperv6.exe and gadget.bas can be modified for your application.

Note: Since 3 steppers motors can be connected to the GADGETMASTER ,
the motor needs to be specified in the command.
Stepper motor 1 must be connected to outputs 1,2,3 and 4.
Stepper motor 2 must be connected to outputs 5,6,7 and 8.
Stepper motor 3 must be connected to outputs 9,10,11 and 12.

Call stepper_move(motor, total_steps) - This command moves a
stepper motor by the number of steps specified by 'total_steps'.

Example

'MOVE MOTOR 1 THE NUMBER OF STEPS SPECIFIED IN
step1.Text IN FORWARD OR REVERSE
If rev1.Value = False Then ‘REVERSE OR FORWARD?
 Call stepper_move(1, Val(steps1.Text)) ‘FORWARD
Else
 Call stepper_move(1, -Val(steps1.Text)) ‘REVERSE
End If

14

Example
'JOG MOTOR 1, ONE STEP THEN POWER OFF ALL THE OUTPUTS
Call stepper_move(1, 1)
If power_off.Value = 1 Then Call gadget_output(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0)

Call step_mode(motor, mode As String) - This command specifies
the 'mode' of the stepper motor. Mode can be specified in three ways;
"single" indicates that the motor will be run with a single motor phase on at
one time.
"two" indicates that the motor will be run with two phases on at a time.
"half" indicates that the motor will be run by alternating 'two phases on' and
'one phase on'. In the half step mode the movements of the motor are half
the normal step size.

The mode must be listed as a string (enclosed in quotes).

NOTE: The mode must be set before a stepper is moved.

Example

'SET THE STEPPER MODE FOR MOTOR NUMBER 1
If single_phase_1.Value = True Then Call Step_mode(1, "single")
If two_phases_1.Value = True Then Call Step_mode(1, "two")
If half_step_1.Value = True Then Call Step_mode(1, "half")

Call step_speed(motor, delay_time) - This command sets the speed
of motor 1,2, or 3. The delay time is the amount of time in milliseconds
between each step.

Example
‘SET THE DELAY BETWEEN STEPS FOR MOTOR NUMBER 2
Call Step_speed(2, Val(delay2))

Call gadget_read_outputs(a,b,c,d,e,f,g,h,i,j,k,l) - This command
reads the current value of the motor outputs. This can be useful if you are
running stepper motors in combination with DC motors or solenoids. Since
you may want to output direct commands to the DC motors but preserve the
value of the outputs to the stepper motors.

Home Sensors
The concept of the 'home sensor' is essential to modern robotics and
automation. Stepper motors will maintain their positions as long as they
are not run too fast or are under powered for the job. But usually when a
system is first powered up, the computer does not know where the device

15

or motor is starting from. A home sensor solves this problem (and
demonstrates the inputs side and the output side of the GADGETMASTER
working together). A home switch can be a simple mechanical switch. The
stepper motor is stepped in one direction until the switch is triggered, then
the motor is stopped and ready to start from a known position.

Sample program

This program is the same as the one above with the addition of the single
line to check for the home sensor.

For x = 1 to 200 ‘DO THIS LOOP UP 200 TIMES
Call gadget_input(in1, in2, in3, in4) ‘READ THE INPUTS
If in1 = 0 then Call stepper_move(1, 1) ‘IF INPUT IS OFF MOVE 1
STEP
Next x ‘KEEP GOING…

Analog Input

Description

Sometimes measuring whether something is 'off' or 'on' isn't enough.
Sometimes it's nice to know 'how bright' or 'how hot' something is. The
Analog input provides you the capability of digitally measuring a voltage
value between 0V and 5V. It's most accurate if the input is kept between
1V and 4V. It converts the steady voltage level into a rectangular pulse on
pin 15. By measuring the width (duration) of the pulse you can determine
the voltage value present on terminal 2 of the Analog Input. We think you
may find this useful in lots of ways.

By connecting a fixed resistor between the analog input and ground and a
variable resistor between the analog input and 5 volts a voltage divider is
created. This means that if the variable resistance is small then the input
will be close to 5 volts, if the variable resistance is large then the input will
be closer to ground
An example is the measurement of temperature. A varistor is a resistor that
has a resistance that varies with temperature. By connecting a suitable
varistor between terminal 1 and 2 and a matching resistor between terminal
2 and 3 you can measure the temperature of the varistor.

Another example is the measurement of brightness using a photocell. As
the light hitting the photocell is increased the resistance of the photocell
decreases. By connecting a photsensor between the input and 5 volts and a

16

fixed resistor of a similar value between the input and ground and voltage
divider is created. As the light level is increased the voltage will increase.

You can also measure the position of a potentiometer shaft by connecting
the potentiometer across terminals 1 and 3 with the "wiper" connected to
pin 2. Make sure to keep the 5V current drain low, we recommend using at
least 1 Kohm.

Connection

There are 3 terminal blocks installed on the GadgetMaster ; the 16
terminal "Output" block, the 10 terminal "Digital In" block and the 3
terminal "Analog In" terminal block.

The center terminal of the 3 is the actual input. Terminal 1 is connected to
the 5V dc power supply, Terminal 3 is connected to the ground or 5V
return. The voltage level present on the center terminal 2 is converted into
a
square pulse and sent to the parallel connector on pin 15.

How it works

An oscillator on the GadgetMaster runs continually when the power is on.
The output of the oscillator is converted into a ramp, or saw tooth shaped
waveform. The saw tooth has a reasonably flat slope between 0V and 5V.
The saw tooth is then fed into a comparitor. The comparitor ‘compares’
the ramp voltage to the analog input voltage. The comparitor output gives
a ‘low’ output level when the analog input voltage value is higher than the
ramp voltage. As soon as the ramp voltage goes above the input value the
output goes high. This ‘on’ or ‘off’ signal is sent to the PC on the port
status address with a value of 0 or 8. A longer ‘off signal’ means a higher

17

voltage.

When the output is off, the red LED is on. You will notice that the LED
glows longer when the analog input voltage is higher. It provides you with
a visual idea what the comparitor is sending back to the parallel port.

You will notice that the analog reading is not always consistent, this is
because computer interrupts caused by modern PC software (Windows)
will vary the number of loops that a program will perform. You will find
that you can make the readings more accurate by averaging a few
measurements.

Call gadget_measure (v) - This command measures the voltage on the
analog input. v is the voltage value on the analog input between 0 and 5
volts. If the GadgetMaster is not connected then the value -1 is returned.

Example

'ANALOG MEASUREMENT
 Call gadget_measurement(voltage)
'DISPLAY THE RESULT
 Text5.Text = Format(voltage, "#0.000")

Output Enable

The 'output enable' connection provides a simple way to prevent the outputs
from functioning. If this terminal, output 13, is connected to ground then
all of the outputs are disabled. This feature is intended to provide a means
powering off all of the outputs if a switch is closed. This terminal is pulled
high to 5 volts and does not need to be connected to make the outputs
work.

18

The High Power, 24 Volt Option

For applications that require a higher power drive the GadgetMaster can
be fitted with the ’24 volt Option’. This includes a 24 volt 1.25 amp power
supply and several modifications to the GadgerMaster board including a
large heat sink and fan. Do not attempt to use a large power supply on a
normal GadgetMaster (it will overheat and self-destruct). It is fine to run
most 12 volt motors at 24 volts but only for short periods of time, the 24
volt option is capable of overdriving small motors and care needs to be
taken to avoid overheating motors that may be under-rated for your job.
For example, stepper motors can be powered down when they are
stationary.

19

Troubleshooting

Problem: I run gmtest.exe and nothing happens.

Check: Make sure everything is plugged in. Make sure the board is
turned on. Make sure the GADGETMASTER is turned on (the yellow LED
will light), red LED will pulse. Make sure the GADGETMASTER is
connected to the correct printer port. Try the different output port
selections; 278,378 and 3BC.

Problem: The board is overheating.

Check: Make sure the device that you are connecting has a resistance of at
least 50 ohm or is drawing less that 240 milliamps continuously. Make
sure that none of the outputs are connected directly to ground or a ground
plane such as a metal object.

Problem: The stepper motors are running very hot.

Check: Stepper motors run hot depending on how long current is left
running through the motors. Read the section on Heat Management and
modify your software, if possible, to reduce the 'on time' of the motors.

For other questions, comments, problems and help just email us at

support@lightmachinery.com or direct from our web site at

www.lightmachinery.com

Good Luck with your projects

I

Appendix A

Binary Numbers
Computers think in a very simple way, things are either 'on' or 'off', up or
down, yes or no. So computers store all numbers as either 1 or 0. Big
number are just lots of 1's and 0's. This kind of number representation is
called binary. We normally use base 10 or decimal math. Using base 10
math we count from 0 to 9 and then we add a new digit and make 10. In
binary math we add a new digit after we count to 1. Here are a list of
numbers from 0 to 32 in each of the number bases

Decimal Binary 2 Bytes Powers of 2 Powers of 2

 as decimals

0 0 0000 0000 0 0
1 1 0000 0001 20 1
2 10 0000 0010 21 2
3 11 0000 0011 21+20 2+1
4 100 0000 0100 22 4
5 101 0000 0101 22+20 4+1
6 110 0000 0110 22+21 4+2
7 111 0000 0111 22+21+20 4+2+1
8 1000 0000 1000 23 8
9 1001 0000 1001 23+20 8+1
10 1010 0000 1010 23+21 8+2
11 1011 0000 1011 23+21+20 8+2+1
12 1100 0000 1100 23+22 8+4
13 1101 0000 1101 23+22+20 8+4+1
14 1110 0000 1110 23+22+21 8+4+2
15 1111 0000 1111 23+22+21+20 8+4+2+1
16 10000 0001 0000 24 16
17 10001 0001 0001 24+20 16+1
18 10010 0001 0010 24+21 16+2
19 10011 0001 0011 24+21+20 16+2+1
20 10100 0001 0100 24+22 16+4
21 10101 0001 0101 24+22+20 16+2+1
22 10110 001 0110 24+22+21 16+4+2
23 10111 0001 0111 24+22+21+20 16+4+2+1
24 11000 0001 1000 24+23 16+8
25 11001 0001 1001 24+23+20 16+8+1
26 11010 0001 1010 24+23+21 16+8+1
27 11011 0001 1011 24+23+21+20 16+8+2+1
28 11100 0001 1100 24+23+22 16+8+4
29 11101 0001 1101 24+23+22+20 16+8+4+1
30 11110 0001 1110 24+23+22+21 16+8+4+2
31 11111 0001 1111 24+23+22+21+20 16+8+4+2+1
32 100000 0010 0000 25 32

II

III

Appendix B

Understanding Addresses
1's and 0's are 'what' the computer stores in memory, addresses are 'where'
the numbers are stored. Each memory location in the computer has an
address. At each address two bytes (8 bits) of information is stored. Each
pin on the computer's parallel port is 'connected' to a single bit (or 1 or 0)
in the computer's memory.

For example, each of the bits in the two bytes stored at 378 Hex

corresponds to the first 8 outputs of the GADGETMASTER .

0 0 0 0 0 0 0 0

 128 64 32 16 8 4 2
1
 output #1 output #2 output #3 output #4 output #5 output #6 output #7
output#8

To send an output to output #1, you simply write a 1000 0000 or 128 to
address 378 Hex. To run a motor or turn on lights at outputs #2, #3 and #7
then simply write 98 (=2+32+64) to 378 Hex. In a basic program this
would be written as follows;

OUT(&378H) = 98

Once this was executed, boom! action! at outputs #2, #3 and # 7

IV

Appendix C

IBM Printer Port Assignments

Pin Address Printer GADGETMASTER Value to Value when

 Name Name Activate Grounded

1 37A Hex Strobe Output 12 or Input Select 20 or 1

2 378 Hex Data bit 0 Output 8 20 or 1
3 " Data bit 1 Output 7 21 or 2
4 " Data bit 2 Output 6 22 or 4
5 " Data bit 3 Output 5 23 or 8
6 " Data bit 4 Output 4 24 or 16
7 " Data bit 5 Output 3 25 or 32
8 " Data bit 6 Output 2 26 or 64
9 " Data bit 7 Output 1 27 or 128
10 379 Hex Acknowledge Input 1 or input 5 26 or 64
11 " Busy Input 2 or Input 6 27 or
128
12 " Out of paper Input 3 or Input 7 25 or 32
13 " Printer on line Input 4 or Input 8 24 or 16
14 37A Hex Auto line feed Output 9 21 or 2
15 " Printer Error Analog Input 23 or 8
16 " Initialize Printer Output 10 22 or 4
17 " Select Output 11 23 or 8
18-25 Ground Ground

IBM Printer Port Pin Assignments

V

Appendix D

Detailed Programming Notes
For some users programming using the Gadget Commands my not provide
enough flexibility to achieve all of their requirements. All of the inputs and
outputs can be controlled directly using commands in Basic and the
following section provides the details for this kind of programming.

Visual Basic does not have the ability to read or write directly to an address
in memory, such as the parallel port address. In other words it does not
have the old INP or OUT commands from old fashioned Basic.
Fortunately, the INP and OUT commands can be restored by including a
dynamic link library (.dll) in the same directory as your VB5 program and
adding a small basic module to each program that you write. The files
Inpout32.dll and inpout32.bas work very well and can be downloaded
from the LightMachinery web site.

Using Basic to track 'inputs'
The inputs are monitored by reading the data at the address of the printer
port. A full list of the printer port addresses is given in the appendix. Here
is the Visual Basic DOS code used in gmtest.exe to determine which of the
inputs are grounded.

 IF (INP(&H379) AND 64) = 64 THEN ' 379Hex is the printer status address

 check1.value = 1 'Input 1 is grounded
 ELSE check1.value = 0 'Input 1 is not grounded
 END IF

 IF (INP(&H379) AND 128) = 128 THEN
 check2.value = 1 'Input 2 is grounded
 ELSE check2.value = 0 'Input 2 is not grounded
 END IF

 IF (INP(&H379) AND 32) = 32 THEN
 check3.value = 1 'Input 3 is grounded
 ELSE check3.value = 0 'Input 3 is grounded
 END IF

 IF (INP(&H379) AND 16) = 16 THEN
 check4.value = 1 'Input 4 is grounded

VI

 ELSE check4.value = 0 'Input 4 is grounded
 END IF
The AND statement compares the 2 bytes stored at memory location 379
Hex to each of the values that we are looking for. 'AND' performs a
'bitwise' comparison which means that it compare each bit stored at 379
Hex with the number we are comparing.

For example;

The statement INP(&H379) AND 16 compares the value stored at 379
Hex which may be
1011 0100 to 16 which is 0001 0000. The AND statement first compares
the first bit in 379 and the first bit in 16. If both are 1 then a 1 is returned
in that position. In this case the result would be a zero in all the positions
except the position where both are 1's which is at the last position in the
first byte, so the result is 0001 0000 or 16.

The check1.value statements simply display the bullet under the inputs
heading on the display. If check1.value is set to 1 then the bullet for the
first input is shown, if check1.value is set equal to 0 then the bullet is not
shown.

then only inputs 5 - 8 can be used, inputs 1 - 4 cannot be read.

Using Basic to program motion

DC motors, solenoids, lights, LED's, buzzers, speakers; attach any of these
devices as shown in the connection diagram. To change the state of the
outputs simply write or 'output' numbers to the correct address. The first 8
outputs are addressed at 378 Hex, the last 3 outputs are at 37A Hex, as

shown in the IBM Printer Port Pin Assignments in the appendix. So, to
activate a motor connected to output number 1 simply output the number
128 to address 378 Hex .

OUT &H378, 128
or
motor_output = 128
OUT &H378, motor_output

To activate a motors, lights or whatever connected to outputs 1, 3 ,4, 7
simply output the number 128, 32, 16 & 2 to address 378 Hex.

motor_output = 128 + 32 + 16 + 2

VII

OUT &H378, motor_output
or
motor_output = 178
OUT &H378, motor_output
or simply,
OUT &H378, 178

Using Basic to Control Stepper Motors
This is the software for the 'Go Reverse' button the DOS version of
Stepper.exe.

SUB gobtnrev_Click () 'This subroutine is activated by
pressing ‘the 'Go Reverse' button

 SHARED p 'p is a pointer that will keep track of
 ‘which phase is energized
 'p needs to be shared between the
 ‘forward and reverse routines
 step_out(1) = 128 'when p is equal to 1 the program will
 ‘output the number 128
 step_out(2) = 64 'when p is equal to 2 the program will
 ‘output the number 64
 step_out(3) = 32 'when p is equal to 3 the program will
 ‘output the number 32
 step_out(4) = 16 'when p is equal to 4 the program will
 ‘output the number 16

 FOR x = 1 TO VAL(steps.text) 'do this loop for every step

 IF p > 1 THEN p = p - 1 ELSE p = 4 ' step pointer backward
 pointer.text = STR$(p) ' displays pointer value on the
 ‘screen
 OUT &H378, step_out(p) 'outputs new position
 FOR y = 1 TO VAL(delay.text) 'delay loop
 y = y + 1
 NEXT y
 NEXT x
 OUT &H378, 0 'turn power off

VIII

Index
115 volts, 1
24 volt Option, 18
Addresses, II
Analog Input, 15,16
Binary Numbers, I
Buzzers, 6
Connection Diagram, 3
DC Motors, 6
Gadget.bas, 7
GMTESTV6.EXE 3
Half step, 12
Heat, 13
Home sensors, 14
Hot motors, 12
Inputs, 4,7,8
LED's, 6
Lights, 5
Output enable, 17
Outputs, 5,8
Overheating, 12
Parallel port, 2
Phase, ,9, 11
Photosensors, 5, 15
Solenoids, 6
Speakers, 6
Stepper Motors,10,11,12,13,14, 15
STEPPERV6.EXE, 11
Switches, 4
Temperature, measuring, 15
Troubleshooting, 19
Varistor, 15
Visual Basic, 8,13

